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CFD computations
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SUMMARY

A multiblock/multilevel algorithm with local refinement for general two- and three-dimensional fluid flow
is presented. The patched-based local refinement procedure is presented in detail and algorithmic
implementations are also presented. The multiblock implementation is essentially block-unstructured, i.e.
each block having its own local curvilinear co-ordinate system. Refined grid patches can be put anywhere
in the computational domain and can extend across block boundaries. To simplify the implementation,
while still maintaining sufficient generality, the refinement is restricted to a refinement of the grid
successively halving the grid size within a selected patch. The multiblock approach is implemented within
the framework of the well-known SIMPLE solution strategy. Computational experiments showing the
effect of using the multilevel solution procedure are presented for a sample elliptic problem and a few
benchmark problems of computational fluid dynamics (CFD). Copyright © 2001 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

In the simulation of complex industrial flows the main challenge consists in modelling and
computing phenomena on a wide range of scales, from a scale that is very small, as compared
with the global computational domain, up to scales that are of the size of the computational
domain. Multiblock methods are often employed to compute flows in complex geometries. The
multiblock approach (in three-dimensional form) is to segment the physical region into
contiguous subregions, each bounded by six curved sides and each of which transforms to a
cubic block in the computational region. Each grid block is assumed to be topologically cubic
(three-dimensional) and has its own curvilinear co-ordinate system.
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Many problems in the field of partial differential equations (PDEs) exhibit solution
behaviours that require more resolution in one area of the domain than in others. There are
often also large portions of the domain where high levels of refinement are not needed. To
achieve an effective numerical simulation of the physical processes, it is important to use a
flexible discretization adapted to the phenomena one wants to describe. The challenge is in the
modelling of phenomena that are present at a scale much smaller than the global computa-
tional domain. Local grid refinement is a natural strategy. With a global and relatively coarse
grid that is supposed to catch the main features of the phenomena studied, one adds extra
degrees of freedom in regions where they are needed. In this way one hopes to distribute the
computational work in accordance with the properties of the physical model, thus achieving
optimal efficiency. The basic idea is to start off from a standard coarse base grid and then to
embed multiple layers of grid refinement by successively dividing the control volumes in the
designated region. Grid refinement can be static or dynamic.

2. GOVERNING EQUATIONS AND DISCRETIZATION

In this section a general framework for fluid flow in complex three-dimensional geometries is
presented. The flow of Newtonian fluids is governed by the Navier–Stokes equations, which
express conservation of mass and momentum. In the case of steady incompressible, laminar
and isothermal flow these can be written

� ·u=0 (1)

� ·(�uul)= −
�p
�xl

+��2ul+ fl, l=1, 2, 3 (2)

where � is the density, u= (u1, u2, u3)= (u, �, w) represents the velocity field, p is the pressure
and � is the dynamic viscosity of the fluid. External forces and other source terms are denoted
by f.

In the case of turbulent flows, the equations are augmented by equations using a standard
k–� turbulence model. The conservation equations may be written in general form as follows:
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where � represents different conserved quantities, such as momentum, continuity, turbulent
kinetic energy, etc. In the steady state case this is a prototype of a scalar advection–diffusion
equation. These equations are discretized on a non-orthogonal colocated grid arrangement. If
a flux vector Jb j containing convection and diffusion is defined as

Jb j=�uj�−��
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�xj

(4)
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Equation (3) can be written as

�(��)
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+
�Jb j
�xj

=S� (5)

We use a finite volume discretization scheme where the equations for the conserved
quantities are integrated over a general non-orthogonal control volume. Multiblock grids are
handled using a local co-ordinate system. Thus, the discretization of the equations proceeds
block by block, exactly as in the single block case. Implicit time discretization (backward
Euler) for the transient term yields
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where superscript ‘0’ denotes values from the previous time step. The general conservation
equation for �, Equation (3), is integrated over a three-dimensional control volume �Vp in
physical space such that after employing the Gauss divergence theorem, one gets
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0�p
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Jb ·Ab �nn=Sp (7)

where nn denotes the cell face index, p is the cell-centre index, Ab is the area vector and Sp is
the total source in the control volume. Because the grid is non-orthogonal, the derivatives that
occur in the viscous and pressure terms must be evaluated in the transformed curvilinear
co-ordinate system (�1, �2, �3). If we use the chain rule for differentiation, we get

��

�xj

=�
l

��l

�xj

��

��l

=�
l

e l ��

��l

(8)

where e l are the contravariant basis vectors of the curvilinear co-ordinates. Details of the
derivation can be found in References [1,2]. In order to alleviate checkerboard oscillations in
pressure (due to the use of a colocated grid arrangement) we use a pressure weighted
interpolation of the cell-face velocities in the discretized continuity equation. The idea goes
back to Rhie and Chow [3].

The coupled momentum and continuity equations are solved in a sequential manner using
the SIMPLE method of Patankar and Spalding [4]. Notice that the arising linear system for
each component of the velocity is non-symmetric. The SIMPLE solution method belongs to
the well-known class of pressure correction methods popular in the primitive variable
computation of complex incompressible flows [5]. The methods use a predictor–corrector
approach to the solution of the Navier–Stokes equations. The SIMPLE method is widely used
in general purpose computational fluid dynamics (CFD) codes. It is a robust methodology
applicable for complex, turbulent recirculating flows and it is potentially applicable to all
regimes from incompressible laminar flows to supersonic flows. The basic SIMPLE solution
strategy consists of iteratively solving the momentum and the pressure correction equations.
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The solution of scalar equations, such as equations for the turbulence production rate and
turbulence dissipation rate, are then solved using essentially the same basic form of Equation
(3). The complete main loop in each time step is given by Algorithm 2.1.

Algorithm 2.1 (Main loop)

Update primary and derived fields, time, boundary conditions, etc.
Iteration loop:
Solve u-velocities
Solve v-velocities
Solve w-velocities
Calculate advective fluxes by Rhie and Chow interpolation
Solve pressure correction
Update pressure, velocity, advective fluxes and density

Repeat (if necessary)
Solve scalar fields

When only the steady state solution is of interest, the time step �t is used as a parameter
through which the convergence rate may be optimized. The viscous flux, see Equation (7), is
split in a primary flux that contains the orthogonal terms (relating to grid) which are treated
implicitly while the other terms are treated explicitly (i.e. lumped into the source terms). Thus,
the arising system of linear equations takes the form

ap�p=�
nb

anb�nb+Sp (9)

where each point p is coupled to its six neighbours (nb) and Sp denotes the discretized source
term. The source term is split such that the resulting matrix associated with the linear system
(9) is an M matrix with constant bandwidth. The M matrix property is important for the
existence of the incomplete factorization method used as pre-conditioner in connection with
the Krylov subspace methods [6].

3. DESCRIPTION OF A MULTIBLOCK/MULTILEVEL ALGORITHM

This section discusses some implementational and computational issues regarding Algorithm
2.1. A description is given of how the grid is made out of patches, what information is
associated with each patch and how patches communicate. The code is implemented in the
FORTRAN 90 programming language and makes extensive use of FORTRAN’s new features
of pointers and dynamic memory allocation.

The composite grid is made up by several blocks that are rectangular and in general
curvilinear. Each patch has associated with it an element of TYPE(patch). This type contains
field variables, boundary conditions and information on how the patches relate to each other
hierarchically and how they overlap. The field variables include the unknowns, derived and
interpolated fields, grid specifications and coupling coefficients for the linearized equations.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 519–538



MULTIBLOCK/MULTILEVEL ALGORITHM FOR CFD 523

The arrays holding these fields are extended with two layers of ghost cells in all directions,
which are used for inter patch communications.

The patches are organized in a hierarchy with levels 1, . . . , L. The coarsest patches on level
1 make up the computational domain. They can be Cartesian or curvilinear by specification of
the cell corner co-ordinates. It is assumed that these coarsest patches have cells matching
exactly in overlapping areas. Patches on level 2 are constructed by halving the grid size on level
1 in some or all directions. Patches on higher levels are constructed similarly. Figure 1 shows
a two-dimensional example with three levels. For each level there is a linked list of pointers
containing all the sibling patches on that level. In addition, the list of siblings on level l has
pointers to the list of parents on level l−1 and the list of children on level l+1. This is
illustrated in Figure 2, where the squares represent patches.

Each patch must know with which other patches it overlaps and how. Since the patches are
topologically rectangular, the overlap region between two patches is also a rectangle and can
thus be specified by the lower left and upper right corners. A patch P overlapping with another
patch Q needs to know the rectangular region where its interior and ghost cells are overlapping
with the interior cells only of the other patch Q, as illustrated in Figure 3. This region must
be specified in local co-ordinates of both P and Q together with interpolation coefficients. This
information is stored in an element of TYPE(overlap). All the overlap elements describing how
P overlaps with other patches are organized in linked lists. There is one list for each of the
levels of parents, siblings and children.

Finally, a patch needs to know which boundary conditions to apply on its six faces. The
different types of boundary conditions include (1) wall—a physical wall with the no slip

Figure 1. The composite grid has patches on several levels.

Figure 2. The patches are oganized in linked lists.
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Figure 3. Overlap region between two patches as seen by P.

condition, (2) inlet—a fully specified flow into the domain, (3) outlet—flow out of the region,
(4) symmetry, and (5) interior—the patch face is in the interior of the entire computational
domain. Any one face of a patch may be governed by several of these conditions applied in
different areas. A patch face is, therefore, divided into non-overlapping rectangles on each of
which a single condition applies. These rectangles are organized in linked lists—one for each
of the six faces.

Assembling the coupling coefficients and source term for the linearized momentum equa-
tions (2) is done with one sweep over all patches with very little communication between
patches. When solving these equations more inter-patch communication is required. A patch
solves an equation only on the area that is not covered by any children—elsewhere the
solution is determined by finer patches. So when solving the linear system A�=b a patch
needs to get � from parents and siblings to its ghost cells and from children to the interior and
ghost cells they cover. When getting � from parents and children, tri-linear interpolation, as
discussed in Reference [7], is used. The interpolated value �P in a cell centre in a patch P is
a weighted sum of �Q in eight surrounding cell centres in the overlapping patch Q

�P= �
8

i=1

Ni� i
Q

The eight interpolation coefficients, Ni, for each cell of P in the overlap region are stored in
the corresponding element of TYPE(overlap) and are determined once and for all prior to the
start of the simulation. This way of patch communication is known as Dirichlet coupling from
[8].

Two alternative methods to tri-linear interpolation from coarse to fine are discussed in
Reference [7]. One of the possibilities is using the higher-order scheme of tri-quadratic
interpolation. It is more accurate than tri-linear interpolation but is also more costly, both in
terms of storage and computations, because of the wider stencil, which in three dimensions
involves 27 coarse cells. The other possibility is referred to as compact interpolation. It consists
of estimating a fine ghost cell value

�ghost=�interior+��coarse ·�r�

based on the gradient estimated on the coarse grid.
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For solving A�=b on the composite grid we use the method of BICGSTAB with line
Gauss–Seidel iterations in all directions on each patch as preconditioning.

Conservation of mass is a key issue and to insure this care must be taken at the interface
between coarse and fine patches. The fluxes along this interface are calculated by pressure
weighted interpolation (see Reference [3]) on both the coarse and fine patches, as illustrated in
Figure 4. These fluxes do not necessarily match because of discretization errors so that mass
could be lost or gained. To insure mass conservation the flux through a coarse cell face is
therefore corrected to equal the sum of the fluxes through the corresponding fine cell faces.

One complication arising because of local refinement is the treatment of coupling coeffi-
cients between the velocity correction and the pressure correction gradient on the coarse–fine
interface. The coefficient C in

u �= −Cp �x

is at a cell centre constructed from the linearized momentum equation coefficients at that cell
centre. Linear interpolation determines C at cell faces. The problem for the fine patch at a
coarse–fine interface is that there are no values for C in the ghost cells to use for the
interpolation. A solution to this is extrapolating C from interior cells.

Another coarse–fine interface complication is the creation of artificial divergence due to the
coarse grid flux correction. What happens is that first the velocities and fluxes are adjusted
after solving the pressure correction equation. This ensures that the continuity equation is
satisfied, i.e. for each cell � Fi=0, where Fi is the flux across a cell face and the sum is taken
over all six cell faces. Then the coarse grid flux correction is carried out. Altering the coarse
grid fluxes on the coarse–fine interface creates a flux imbalance, � Fi�0, for the coarse cells
next to this interface. As a remedy it is possible to implement a different coupling between
coarse and fine patches, which lets the coarse–fine interface flux on the fine patch dictate the
flux on the coarse patch during the solution process of the pressure correction equation. This
way there will be no need for coarse grid flux correction, so no artificial imbalance is created.

Using the flux as a condition on the boundary to another patch is known from Reference
[8] as Neumann coupling. The reason for using this term is that a known flux implies zero flux
correction, which again implies zero pressure correction gradient, i.e. homogeneous Neumann

Figure 4. Fine and coarse fluxes at the same face must match.
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condition. Combining Dirichlet (D) and Neumann (N) coupling gives several possibilities; DD,
DN and NN. Figure 5 shows the stencils for the DN coupling, where the fine patch above the
interface uses Dirichlet coupling and the coarse patch below uses Neumann coupling. Letting
the coupling both ways be of Dirichlet type (DD) is easiest to implement, but there might be
a problem with satisfying the continuity equation as discussed above. Neumann coupling both
ways (NN) solves that problem, but introduces another. An extra coupling condition for p �
across patch interfaces must be introduced since there are only one-sided zero gradient
conditions at both patches. Dirichlet coupling one way and Neumann coupling the other (DN)
allows a strong coupling of p � across patch interfaces at the same time as the coarse grid flux
correction problem is solved.

A complication with the DN coupling is how to efficiently solve the pressure correction
equation. The Neumann coupling alters the term Sp in Equation (9) for the coarse cells next
to the coarse–fine interface. The equation thus changes dynamically as it is solved, and the
solution method used for DD coupling may fail to converge. Alternatively, Algorithm 3.1 can
be employed, but slower convergence may become a serious problem for large grids.

Algorithm 3.1 (Solving Ap �=b using DN coupling)

Patch loop (fine to coarse):
Interpolate solution to ghost cells from other patches
Interpolate solution to entire patch from children
Correct fluxes at coarse–fine boundary
Adjust b for cells adjacent to the coarse–fine boundary
Solve for p � where patch has no children

Repeat (if necessary)

The use of a locally refined grid naturally raises the question about how to get the best
trade-off between accuracy and computational costs. In particular, one may ask where the fine
grid patches should be placed and how many levels should be used. For relatively simple
problems it may be known a priori where additional resolution is required. In these cases, static
grid hierarchies may be designed with focus on these areas and with levels of refinement
resulting in acceptable computational complexities. This is the approach taken in the experi-
ments in the following section.

Figure 5. Stencils for Dirichlet and Neumann couplings.
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More sophisticated techniques using adaptive refinements in space and time are possible
[9–11]. The area to be refined may be determined automatically by using some kind of error
estimation. Simple error indicators may be based on velocity gradients or curvature. Alterna-
tively, estimates of the truncation error on coarser grid may be calculated [11] or some type of
Richardson extrapolation may be used to estimate the discretization error [12]. Once the region
requiring refinement has been identified, a compromise has to be made between using many
patches to cover as little area as possible and using few patches covering a larger area in order
to reduce the overhead associated with communication between patches.

4. NUMERICAL RESULTS

Three different test problems have been studied

� The Poisson problem—a scalar equation.
� Lid-driven cavity—a closed recirculating problem.
� Backward-facing step—a problem with open boundaries.

4.1. The Poisson problem

The Poisson equation examined here is −�2�=S�(x, y), with the source term S�(x, y)=
−200 e−10(x+y). The solution on the unit square with appropriate Dirichlet boundary condi-
tions is �(x, y)=e−10(x+y) and is plotted in Figure 63. The Poisson equation is derived from
the general conservation equation (3) by letting uj=0, ��=1 and considering the steady state
solution. As the initial guess we use �=0.

Figure 6. The solution of the Poisson problem on a 32×32 grid.

3 In this and all subsequent plots of this kind, the values at cell centres are connected with lines. These lines do not
correspond to cell faces.
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Figure 7. Discretization errors for uniform grids.
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The discretization errors on uniform 16×16, 32×32 and 64×64 grids are plotted in Figure
7. We then compare with errors achieved using local refinement. Our coarsest grid is a uniform
8×8 grid and we have four grid levels, so the finest grid size corresponds to the uniform
64×64 grid in Figure 7(c). The refinements are placed near the origin, where the solution has
steep gradients. Figure 8 shows the errors using bilinear and compact interpolation. We see
that the error on the locally refined grid is comparable with the error on the uniform 64×64
grid even though the number of grid points is reduced by approximately 80 per cent. The
corresponding reduction in computational time is about 65 per cent, reflecting the additional
costs of maintaining the grid hierarchy.

Figure 8. Discretization errors for locally refined grids.
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Getting good results is highly dependent on the choice of grid refinement. The refined
regions should be as small as possible to save on computational efforts, but not so small that
the accuracy deteriorates. If we choose the refined grids on levels 3 and 4 to be smaller, we get
the results shown in Figure 9. The coarse–fine grid interfaces now have steeper solution
gradients. This leads to larger errors, especially for the bi-linear interpolation method, as
pointed out in Reference [7]. When comparing the two interpolation methods, the compact
scheme seems more robust and accurate than the bi-linear scheme.

Figure 9. Discretization errors for locally refined grids, with smaller refined regions.
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4.2. Lid-dri�en ca�ity

The lid-driven cavity is an extensively studied standard test case for flow simulation codes. The
numerical solutions presented in Reference [13] are believed to be highly accurate and are often
used as reference solutions for benchmark tests. The set-up for the lid-driven cavity in two
dimensions is schematically depicted in Figure 10. The no-slip condition applies to all walls,
and the upper wall has a constant velocity to the right. Viscosity forces create a clockwise
circulation and, depending on the Reynolds number, higher-order eddies in the corners. The
Reynolds number is in this case defined as Re=UL/�, where U and L are the speed and length
of the moving wall respectively, and � is the kinematic viscosity. In our experiments we have
chosen Re=1000.

Figure 11 shows some test results on a uniform 64×64 grid. The figure shows the centreline
velocities u(0.5L, y) and �(x, 0.5L). Various schemes for flux treatments are compared with the
reference solution in Reference [13]. The first-order upwind scheme performs worst. The two
other alternatives, �=1/3 and ‘Quick’, are higher-order schemes implemented as explicit
corrections to the upwind scheme. They both lead to significant improvements. The �=1/3
scheme seems to give somewhat better results.

To test the local grid refinement procedure we have repeated a numerical experiment
described in Reference [14]. One of the grids used here is shown in Figure 12. It consists of two
grid blocks with a 2:1 cell size ratio along the interface. The top block is 64×32 and the
bottom is 32×32. The simulation is also done with the same grid layout with twice as fine
resolution. The centreline velocities, plotted in Figure 13, are in agreement with the results in
Reference [14].

A second experiment with a skewed lid-driven cavity was carried out as a test for using
non-orthogonal and stretched grids. The set-up was implemented as in Reference [15] for
Re=1000 and the angle between grid lines 	=30°. Several grid sizes and different amounts
of grid stretching were tested. We also examined the possibility of placing locally refined grid

Figure 10. Lid-driven cavity.
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Figure 11. Centreline velocities for a 64×64 grid with various schemes for explicit flux correction.

Figure 12. The grid layout from Reference [14].
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Figure 13. Centreline velocities with grid layout as in Figure 12.

patches along the moving lid and other regions, where enhanced spatial resolution could be
expected to give more accurate results. However, this did not seem to lead to improved
accuracy compared with a uniform grid solution of comparable computational complexity. A
grid with carefully chosen stretching is capable of producing improved results compared with
an equally sized regular uniform grid without any additional computational expenses, other
than possibly the need for a time step reduction due to smaller grid cells. Figure 14 shows the
stretching that produced best results for this test case. The plots of centreline velocities in
Figures 15 and 16 demonstrate the improvements of stretched grids compared with regular

Figure 14. Stretched 33×33 grid for the skewed lid-driven cavity.
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Figure 15. Centreline velocities (u) for the skewed lid-driven cavity.

Figure 16. Centreline velocities (�) for the skewed lid-driven cavity.
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grids, identified with the suffixed letters ‘s’ and ‘r’ in the figure legends. Comparisons with
simulations in Reference [15], where they used a 320×320 grid show good convergence.

4.3. Backward-facing step

Another extensively studied test case is flow over a backward-facing step (see, for instance,
References [8,16,17]). The set-up we have used in our simulations, similarly to that in
Reference [18,19], is depicted in Figure 17. The computational domain is the rectangle to the
right of the step, with height H and length XL. We choose H=1 m, h=H/2 and XL=27H.
The inflow is specified as a parabola with mean velocity ū. The other boundary conditions are
ux=�y=0 at the outflow, and the no-slip condition at the walls. The Reynolds number is
defined as Re= ūH/�, and in our experiments we have chosen Re=400.

In our first experiment we study how XR, the length of the recirculating area, depends on the
resolution. Figure 18 shows u(x, 0.01H), the horizontal velocity component just above the
bottom of the channel, for various uniform resolutions. For the 256×64 grid, XR=4.25
m=8.5h, which is in agreement with Reference [19].

In order to test the local grid refinement procedure we used the three-level grid shown in
Figure 19. Figure 20 compares u(x, 0.01H) for locally refined grids with uniform grids
corresponding to the finest resolutions. The figure shows almost no visible differences in the
leftmost region, where the locally refined and uniform grids are equal. Elsewhere, the linear
interpolation procedure used to determine u(x, 0.01H) produces some differences.

5. SUMMARY

A multiblock/multilevel algorithm with local grid refinement applicable for general complex
fluid flow has been presented. The discretization method using the SIMPLE method has been

Figure 17. Backward-facing step.
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Figure 18. Horizontal velocity 0.01H above the bottom various uniform grids.

Figure 19. The three-level grid used for the calculations in Figure 20.

described. Details about the implementation of local grid refinement have been discussed. In
particular, coarse grid flux correction and mass conservation are seen in connection with
Dirichlet coupling and Neumann coupling between coarse and fine patches. Finally, numerical
results for three standard test cases are given.
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Figure 20. Horizontal velocity 0.01H above the bottom for locally refined and uniform grids.
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